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1. INTRODUCTION

Let C = {1,2,...,n} denote a set of components and let A = [0,1]".

A nondecreasing mapping v: A = [0,1] with Y(0) = 0 and v(1) = 1 is said

to be a continuum structure function (CSF). If sup [y(li,gp-y(oi,x)] >0
XEA ~

for each i € C, where (61,5) denotes (xl""’Xi—l’é’xi+1""’xn)’ Y is

said to be weakly coherent.

Let Pl,...,Pr denote the r minimal path sets of a binary coherent
structure function. If

Y(X) = max min X, (XA,
1<j<r iGPj

Y is said to be a Barlow-Wu CSF [2].

Definition
Let {¢a,0<051} be a class of binary coherent structure functions such
that ¢a(xa) is a left-continuous and non-increasing function of a for fixed

X where Y . is the indicator of {Xigq}, i=1,2,...,n. 1If

i

Y(X) > a iff ¢,GQ'°) = 1 (5€A,0<a_<_1).
Y is said to be a Natvig CSF [3].

In this paper, we present axiomatic characterizations of the Barlow-Wu
and Natvig CSFs. In particular, we show that Y is a Barlow-Wu CSF if and

only if it satisfies the following conditions:

ALACEL AR (L WC T I ALY
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Cl Y is continuous

C2 P, #pand Py € (0,0}, 0 <a <1

C3 There is no nonempty open set A € A such that Y is constant on A

C4 vy is weakly coherent

where Pa = {nglY(ﬁ)AZ a whereas Y(Z) < a for all Zﬁi} and where Y < X

means that Y < X but that Y # X. -
Some consequences of these axioms are deduced in Section 2, and in

Section 3 we present our main results: an axiomatic characterization of

the Barlow-Wu CSF and an analogous characterization of the Natvig CSF.

Our approach.was suggested by the Borges-Rodrigues characterizations of

the Barlow-Wu and Natvig multistate structure functions [5] though, as we

show in Section 4, their characterizations are incorrect.

2. SOME DEDUCTIONS FROM THE AXIOMS

Let Ua = {XeAly(X) >a} and L, = {XeAlv(X) <a}, 0 < a < 1. Further,

define K = {X€AlY(X) <a whereas Y(Y) > a for all ¥ > X}, 0 < a < 1.

Proposition 2.1

IR S R
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Let ¥ be a CSF.
(1) v is right (left)-continuous if and only if each Ua(La) is closed.
(ii) If v is right (left)-continuous, then each Pa(Ka) is nonempty and
X €U (L) if and only if X > (<) ¥ € P (K ).
(i1i) 1If vy is continuous, then Y(Pa) = {a}, 0 <a <1, and Y(Ka) = {(a},

0<acx<l,
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Proof: The proofs of (i) and (iii) are straightforward; see [4] for the

proof of (ii).

Proposition 2.2

If vy is a continuous CSF, conditions C2 and
c2' K #@and K < {a,1}", 0<a<l

are equivalent.

Proof: Since Yy is continuous, each Koz is nonempty. We show that, if C2
holds, then K < {a,1}" for all a € [0,1).

Suppose, conversely, that for some o € [0,1) there exists a vector i
Y € K, such that Y ¢ {0,1}". Then there exists at least one component, k
say, such that Y, ¢ {a,1}. Either 0 < Y<a<lorO0c<ac Y, <15 we
consider these two cases separately.

Suppose, firstly, that 0 < Yk < a < 1. By Proposition 2.1, v(Y) = «
and Y(ék’z.) >a if Yk <& <a. Let Y(5k’.¥) = £; then (6k’-¥-) € UE' Since
Ug is closed there exists, by Proposition 2.1, an X< (6k"¥-) such that

56?5. Now};ﬁug

so X € {0,£F, in contradiction to C2.

VDN, ) IAABIUIG. | BRI

andson<xk56. ThusOSYk<Xk56<cl<gand

» 'M' RS

Suppose, now, that 0 < a < Yk < 1, Again Y(D = a. Let Y(lk-,‘i) =

el rrry

8 > a. Since Y(xk’l) is a continuous, nondecreasing function of x for

<
e 1 v s

SRIAT | y .
PP eraray; RN

fixed (.k’z.)’ it follows from the intermediate value theorem that, for

s.

given £ with a < £ < YkAG, there exists a w € (Yk,l) such that Y(Wk’.‘!) = £.

Thus (wk,Z‘) € U_ and hence there exists an ‘)5 < (wk’X-) such that X € PE.
< w. It follows that 05a<€<Yk<xk5w

3
Now)_{‘( Ugand S0 Yk<x

k
and hence X ¢ {0,£}", in contradiction to C2.

g L o g0 se an 2a ou g
T A A e

e e, - e, e A - EEE REER Ve e B AN
' S T AR NN A
DL R e e NN L T e N T T T T

P IR I P SRS S0P S0 SIS DI PRSI LI S DI RALG 3 TR I 3 S,




AN A AR A e A A A M A AR A AR AN AR MM ot s i i M i i e M P e M i St e it s e et |

Thus, a continuous CSF satisfying C2 also satisfies C2'. A similar

argument verifies the converse. D

Proposition 2.3

If v is a CSF which satisfies Cl, C2 and C3, then T({O,a}n) = {0,a} for

all o« € [0,1].

Proof: If a = O there is nothing to prove, so suppose that, for some

' . .".'v"-"

a € (0,1], there exists a vector X € {0,a}" such that B = v(X) € {0,a}.
It is easily seen that 0 < f < @ and that 5}# Qor g, and hence we can

write

r 0 for j=1,2,...,k
x —
a for j=k+l,...,n

for some k with 1 < k < n-1.

b ot

Since X € U, N LB’ and both are closed, it follows from Proposition 2.1

B8

that there exist a Z € P, and a W € K, such that Z

B B
will only hold if Z € {0,8}" - {0} satisfies z

N
IA
1
IA

W. This ordering 1

L]
o

. for j=1,2,...,k and
3
= 1 for j=k+l,...,n and so A = (Z,,W,)x---x

W e

if W€ {B,1}" - {1} satisfies W

- i, }
. J J

s (zn,wn) < A is open. Further, since ZE€ PB and W € K., it follows that :

L:—_‘ Ly
q Y(X) = B for all X € A, in contradiction to C3. Thus v(X) € {0,a} as I
S \

- claimed. D :

- ]

. )

b - [

'l Proposition 2.4

- If v is a CSF which satisfies Cl, C2 and C3, then Pu = aPl for all

.

b'. a € (0,1] .

-
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Proof: Suppose that a < 1, otherwise there is nothing to prove, and let

X € Pa so that Y(,)S) = a. Then X < %’)3 and so Y(.-)S.) < Y('é,)f,)‘ Since

éﬁ € {O,l}n, it follows from Proposition 2.3 that Y(%ﬁ) = 1. We claim that

e,

Suppose, conversely, that éﬁ ¢ Pl' Since Ul is closed, it follows
from Proposition 2.1 that there exists a W < éﬁ such that W € Pl' Consider
the vector oW € {O,G}n; it is easily seen that Y(aE) = & and thus there
exists a vector oW < X such that oW € Ua' This contradicts the assumption
that X € Pa and hence éﬁ € Pl as claimed. This holds for all Xe Pa and
1) Pa c aPl.‘

Similarly, it can be shown that aPl c Pa' [1

3. THE CHARACTERIZATION THEOREMS

Theorem 3.1
A CSF vy is of the Barlow-Wu type if and only if it satisfies conditiomns

Cl, C2, C3 and C4.

Proof: It is easily verified that the Barlow-Wu CSF satisfies C1l, C2, C3

and C4., To prove the converse, observe that

Y(X) >aes X>YEP

° o

F e min X, > o for some Y € P
12 ~> a
.

A e max min X, >«

- YeP {ilY, =a}

' ~ 1

e
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= max min X o by Proposition 2.4

YeoP, {iIYi=a}

v

i

<= max min X
ZﬁPl {iIZi=l}

v

& where Z = L .
i ~ O~

This holds for all X €Aand a € (0,1] and so .

Y(E) = max min Xi.
zer, {ilzg=1}

Write P, = {z(l),...,ﬁ(N)} and let Tj = {i€CIX§J) = 1}. By the definition

of Pl, it is clear that each Tj is nonempty and that Tj & Tk for all

jsk=1,2,...,N with j # k. Thus

Y(é) = max min X

Loy d€T, 1

N
where each Tj c C. Condition C4 ensures that (~)Tj = C, completing the
j=1

proof. [] |
{

Theorem 3.2

PN T S Y

A CSF vy is of the Natvig type if and only if it satisfies C2 and

(B Y is right-continuous
c4' For each 1 € C and all a € (0,1), there exists an X € A such

that Y(ai,g) > a whereas Y(Bi,ﬁ) <o for all B < a.

Proof: Baxter [3] proves that Natvig CSFs are right-continuous, and it is
readily seen that such functions satisfy C2 and C4'., Conversely, from the )

preceding proof,
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Y(X) > a e max min Zq = 1
YEP_ {11Y =a}

where Z . is the indicator of {X;>a} (O<acl, X€A). Write Py =

gD, x OOy ang e 1 = trecix(®P - a), 51,2, 8.

Then Y(ﬁ) > a if and only if ¢GQEG) = 1 where

¢ (Z ) = max min Z ..
@ 1<j<N(a) iE’I‘J?‘ al
We claim that the binary functions {¢a, 0<o<l} satisfy the conditions of the
definition of the Natvig CSF.

It is clear that ¢a is nondecreasing in each argument for all
a € (0,1] and that ¢GQ§a) is nonincreasing in a for fixed X.

To verify left-continuity, it is sufficient to consider the point at
which the function decreases. Thus, suppose that Y(é) = a (0O<o<l); then
there exists an X' < X such that X' € P . Clearly, Y(ﬁ') = o and hence

' = : 1y ¢ Yy .. :
¢a(£ a) 1 whereas, if 8 > «a, Y(ﬁ ) B and so ¢BQgB) 0. Thus ¢a(20) is
left-continuous as claimed.

Lastly, observe that, by C4', for each i € C and all a € (0,1], there
exists an X € A such that ¢a(li,Ea) = 1 whereas ¢G(Oi,za) = 0 and so each

¢a is coherent.

This completes the proof. []
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4. SOME REMARKS ON THE BORGES-RODRIGUES CHARACTERIZATION

Let S = {0,1,...,M}, M > 1. A nondecreasing mapping &: S" S with

¢(g) = 0 and @(ﬂ) = M is said to be a multistate structure function

(MSF). It is weakly coherent if max [Q(Mi,x) - ¢(0i,X)] > 1 for each i € C.

xes"
If
¢(X) = max min X, (Xes")
I<j<r iEPj t
where P

1""’Pr are the r minimal path sets of a binary coherent structure
function, then ¢ is said to be a Barlow-Wu MSF [1]. If ¢(5) > j if and only
if ¢j(zd) =1 (5§s“, j=1,2,...,M) where {¢l,...,¢M} is a collection of
binary coherent structure functions such that ¢j(16) is nonincreasing

in j fqr fixed 5, and where in is the indicator of {Xizj}, then ¢ is said

to be a Natvig MSF [6].

Borges and Rodrigues [5] present axiomatic characterizations of the

1
j

Barlow-Wu and Natvig MSFs in terms of the following conditions:

e

BL For every X € S" with ®(X) > k > 1, there exists a ¥ € {0,k}"

[ such that ¥ < X and o(Y) > k ]

®
- B2 ¢({o,M}") = {0,M} 3
p - Y
b - Y
L B3 ¢ is weakly coherent. 4
3 =4
L Borges and Rodrigues [5] claim °
- N
- (1) ¢ is a Barlow-Wu MSF if and only if it satisfies Bl, B2 and B3 N

:
3 (2) ¢ is a Natvig MSF if and only if it satisfies Bl and B3. g
g -
- ®

Both claims are false as the following examples attest.
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Example 4.1 {

Consider the MSF ¢l: {0,1,2}20* {0,1,2} defined as follows: i

®l(0,0) =0 ¢l(0,l) =0 ¢1(0,2) =2 J

g

®l(l,0) =0 ®1(1,1) =1 ¢1(1,2) =2 ;

®1(2,0) = 2 ®1(2,1) =2 ¢1(2,2) = 2, .

This satisfies Bl, B2 and B3 and yet is clearly not of the Barlow-Wu type 4

L

since the only Barlow-Wu MSFs of size two are XlAX2 and XIVXZ' Notice in 1

A

particular that @l provides a counter-example to Lemma 4 of [5]. 1

1

o

Example 4.2 %

Let ¢1(Y11,Y12) = Yll and ¢2(Y21,Y22) = Y21AY22 and define the MSF é

9y {0,1,2}21» {0,1,2} as the function which satisfies QZ(Xl,XZ) >3 -

. , . ) . o . p

if and only if ¢j(Yj1’Yj2) 1 where &ji is the indicator of {XiZJ} j

(i,j,=1,2). This is clearly not a Natvig MSF since the binary function j

!

¢1 is not coherent, but it is easily verified that ¢2 satisfies Bl and B3. ;

.

3 2

; 3
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